Saturday, February 10, 2007

Anesthetics may produce Alzheimer's-like changes in the brain
.
Alzheimer's Donation
Donate Online Now
.

Alzheimer's disease is characterized by plaques within the brain of amyloid-beta protein (A-beta), which is toxic to brain cells. A-beta is formed when the larger amyloid precursor protein (APP) is clipped by two enzymes -- beta-secretase, also known as BACE, and gamma-secretase -- to release the A-beta fragment. Normal processing of APP by an enzyme called alpha-secretase produces an alternative, non-toxic protein.

A new study has found how one of the most commonly used anesthetics may produce Alzheimer's-like changes in the brain. Previous studies have shown that applying the anesthetic isoflurane to cultured neural cells can lead to generation of amyloid-beta protein -- the key component of senile plaques seen in the brains of Alzheimer's patients -- and to the cell-death process known as apoptosis. In the Feb. 7 Journal of Neuroscience, researchers from Massachusetts General Hospital (MGH) and colleagues describe how isoflurane may set off a process in which A-beta generation and apoptosis interact with and magnify each other. Since this work was done in cell cultures, it is unknown whether the findings reflect a possible effect of the anesthetic on human brains.
Some studies have indicated that general anesthesia may increase the risk of developing Alzheimer's disease. It also is known that a small but significant number of surgical patients experience a form of dementia in the postoperative period, but there is insufficient evidence of a direct connection between anesthesia and the risk of dementia. Previous articles -- including a recent report from the same research team -- have shown that isoflurane increases both A-beta generation and apoptosis in several types of cultured cells. The current study was designed to investigate the relationship between isoflurane-induced apoptosis and A-beta generation.
In a series of experiments, the researchers first found that applying isoflurane to cultured neural cells increased the activation of the enzyme caspase -- a key player in a pathway leading to apoptosis -- with no change in A-beta generation or APP processing. When they applied isoflurane to neural cells that express APP and had been treated with a caspase inhibitor, the expected changes in APP processing and A-beta generation were significantly reduced, indicating that caspase activation is essential to the pathway leading to A-beta generation and aggregation.
The researchers also found that isoflurane appears to raise levels of the A-beta-releasing enzymes BACE and gamma secretase and that generation of A-beta plaques further increases isoflurane-induced caspase activation. In addition, adding A-beta to neuronal cells that do not express APP also increased caspase activation in response to isoflurane. Overall, the study's results define molecular pathways by which isoflurane induces deposition of A-beta, both directly and via caspase activation, and by which A-beta deposits lead to further caspase activation and apoptosis.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home