New Clues To Biochemistry Of 'Anti-Aging'
.
Alzheimer's Donation
Donate Online Now
.
Published in the June 19-23 issue of Proceedings of the National Academy of Sciences, the study is the first to show that sirtuins directly control specific metabolic enzymes - called AceCSs - in mammalian cells.
The finding, which shines a spotlight on enzymes only recently thought to play a role in the biochemistry of "anti-aging," has attracted the interest of biotechnology companies seeking to make drugs that delay the aging process and age-related diseases. The drugs could target the metabolic enzymes to produce health benefits.
"Sirtuins are very enticing because of their ability to slow the aging process," says John Denu, associate professor of biomolecular chemistry at the UW-Madison School of Medicine and Public Health (SMPH) and lead author on the study. "They also have great potential for promoting healthier aging by giving us a better understanding of - and possibly suggesting treatments for - metabolic diseases such as diabetes and neurological disorders such Alzheimer's and Huntington's diseases."
Scientists studying the genetics and physiology of sirtuins in organisms such as yeast, worms, flies and mice have shown that this enzyme family plays a role in a variety of cellular processes, including gene silencing, cell death, fatty acid metabolism, neuronal protection and life span extension.
"In humans, sirtuins have been implicated in the health benefits of calorie restriction, which is known to lengthen life span, and the enzymes are activated when they are exposed to resveratrol, a plant product found in red wine also known to extend life span," Denu says. "In addition, elevated levels of sirtuins somehow slow degeneration in nerve cells that have been damaged, and the enzymes affect aspects of metabolism responsible for controlling insulin secretion."
Denu and his team, which has published widely on sirtuins, conducted test tube studies using mouse cells to learn exactly which molecular players sirtuins act on directly. Previous studies suggested that sirtuins control genes indirectly in the cell nucleus. The first hint that sirtuins might directly control metabolic pathways came from earlier work in bacteria done by UW-Madison bacteriology professor Jorge Escalante.
The finding, which shines a spotlight on enzymes only recently thought to play a role in the biochemistry of "anti-aging," has attracted the interest of biotechnology companies seeking to make drugs that delay the aging process and age-related diseases. The drugs could target the metabolic enzymes to produce health benefits.
"Sirtuins are very enticing because of their ability to slow the aging process," says John Denu, associate professor of biomolecular chemistry at the UW-Madison School of Medicine and Public Health (SMPH) and lead author on the study. "They also have great potential for promoting healthier aging by giving us a better understanding of - and possibly suggesting treatments for - metabolic diseases such as diabetes and neurological disorders such Alzheimer's and Huntington's diseases."
Scientists studying the genetics and physiology of sirtuins in organisms such as yeast, worms, flies and mice have shown that this enzyme family plays a role in a variety of cellular processes, including gene silencing, cell death, fatty acid metabolism, neuronal protection and life span extension.
"In humans, sirtuins have been implicated in the health benefits of calorie restriction, which is known to lengthen life span, and the enzymes are activated when they are exposed to resveratrol, a plant product found in red wine also known to extend life span," Denu says. "In addition, elevated levels of sirtuins somehow slow degeneration in nerve cells that have been damaged, and the enzymes affect aspects of metabolism responsible for controlling insulin secretion."
Denu and his team, which has published widely on sirtuins, conducted test tube studies using mouse cells to learn exactly which molecular players sirtuins act on directly. Previous studies suggested that sirtuins control genes indirectly in the cell nucleus. The first hint that sirtuins might directly control metabolic pathways came from earlier work in bacteria done by UW-Madison bacteriology professor Jorge Escalante.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home