Growth Factors In Memory Formation
.
Alzheimer's Donation
Donate Online Now
.
A type of protein crucial for the growth of brain cells during development appears to be equally important for the formation of long-term memories, according to researchers at UC Irvine. The findings could lead to a better understanding of, and treatments for, cognitive decline associated with normal aging and diseases such as Alzheimer's. The findings appear in the early online edition of the Proceedings of the National Academy of Sciences. "This study presents strong evidence that a molecular process fundamental during development is retained in the adult and recycled in the service of memory formation," said Thomas J. Carew, Donald Bren Professor and chair of UCI's Department of Neurobiology and Behavior. "It is a striking example of how molecular rules employed in building a brain are often reused for different purposes throughout a lifetime." The researchers have shown that proteins known as growth factors are as essential for the induction of long-term memory as they are for the development of the central nervous system. These growth factors, such as brain derived neurotrophic factor (BDNF), bind onto the brain cell through a specific type of receptor known as TrkB, much the same way a key fits into a lock. As an experimental strategy to determine the importance of BDNF-like growth factors in forming memories, the researchers used a "molecular trick" to keep the proteins from binding with the appropriate TrkB receptors.
"We would never have expected that the secretion of these growth factors in response to serotonin would be critical for long-term memory formation in this system," Carew said. "But it is apparent that without them, this process cannot happen." According to Carew, these findings could open possible avenues for treatments relating to memory loss. "This gives us some strong clues as to what we should be looking into for therapeutic interventions," he said. "If we know that growth factors are important for long-term memory, then we can look at possible remedial roles they might play in diseases such as Alzheimer's and dementia."
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home